Login Register






Thread Rating:
  • 0 Vote(s) - 0 Average


Python script that utilizes asynchronous programming to concurrently fetch data filter_list
Author
Message
Python script that utilizes asynchronous programming to concurrently fetch data #1
Requirements:

Install aiohttp, pandas, and plotly libraries:

bash

pip install aiohttp pandas plotly

Here's the script:

python

import aiohttp
import asyncio
import pandas as pd
import plotly.express as px

async def fetch_data(url):
async with aiohttp.ClientSession() as session:
async with session.get(url) as response:
data = await response.json()
return data

async def fetch_and_process_data(urls):
tasks = [fetch_data(url) for url in urls]
results = await asyncio.gather(*tasks)
return results

def process_data(results):
combined_data = []
for data in results:
# Perform any necessary processing on the data
combined_data.extend(data)
return combined_data

def visualize_data(data):
df = pd.DataFrame(data, columns=['Date', 'Value', 'Category'])

fig = px.line(df, x='Date', y='Value', color='Category', markers=True, title='Data Visualization')
fig.show()

async def main():
urls = [
'https://api.example.com/data1',
'https://api.example.com/data2',
'https://api.example.com/data3'
]

results = await fetch_and_process_data(urls)
processed_data = process_data(results)
visualize_data(processed_data)

if __name__ == "__main__":
asyncio.run(main())

Explanation:

The script uses aiohttp for asynchronous HTTP requests, allowing multiple requests to be made concurrently.
It defines an asynchronous function fetch_data to fetch data from a given URL.
fetch_and_process_data asynchronously fetches data from multiple URLs concurrently.
The process_data function processes the data as needed.
Finally, the visualize_data function uses Plotly to create an interactive line plot.

Reply







Users browsing this thread: 1 Guest(s)