Login Register






Thread Rating:
  • 0 Vote(s) - 0 Average


Deep Learning with TensorFlow and Keras filter_list
Author
Message
Deep Learning with TensorFlow and Keras #1
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

# Build a simple neural network for image classification
model = keras.Sequential([
    layers.Flatten(input_shape=(28, 28)),
    layers.Dense(128, activation='relu'),
    layers.Dense(10, activation='softmax')
])

# Compile the model
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])

# Load and preprocess the MNIST dataset
mnist = keras.datasets.mnist
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
train_images, test_images = train_images / 255.0, test_images / 255.0

# Train the model
model.fit(train_images, train_labels, epochs=5)

# Evaluate the model
test_loss, test_acc = model.evaluate(test_images, test_labels)
print(f"Test accuracy: {test_acc}")

Reply







Users browsing this thread: 1 Guest(s)